مقایسه و پیش بینی داده های آزمایشگاهی راندمان حرارتی مبدل دو لوله ای با نانو سیال اکسید آهن توسط شبکه های عصبی مصنوعی

Authors

Abstract:

در این بررسی راندمان حرارتی مبدل دو لوله ای با نانو سیال آب – Fe3O4 در اعداد رینولدز21000-2000 و کسر های حجمی بین(0.1-0.4% v/v) توسط شبکه عصبی مصنوعی ( ANN ) و همبستگی با استفاده از داده های آزمایشگاهی ارزیابی و پیش بینی شده است . سایز نانوذره اکسید آهن در حدود 20 نانومتر می باشد . عکس برداری SEM از نانو ذرات نیز برای روشن شدن پایداری و همگن بودن سوسپانسیون ارائه شده است . عدد رینولدزو کسرهای حجمی متفاوت نانو سیال اکسید آهن به عنوان داده های آزمایشی برای ANN استفاده شده است . از شبکه عصبی پیش رو با دو لایه و الگوریتم آموزشی پسا انتشار خطا – لونبرگ مارکوارت (BP-LM) برای پیش پارامترهای انتقال حرارت استفاده شد. 70درصد دادها در مجموعه آموزشی و15درصد دادها در مجموعه ارزیابی و مابقی به عنوان داده ای تست در راستای جلوگیری از بیش برازش شبکه و بررسی کارایی نهایی شبکه مورد استفاده قرار گرفت . به علاوه ، بر اساس داده های آزمایشگاهی و استفاده از شبکه عصبی مصنوعی ، داده های پیش بینی شده توسط شبکه های عصبی با نتایج آزمایشگاهی که توسط مبدل حرارتی دو لوله ای اندازه گیری شده همخوانی بسیار خوبی دارد. میزان صحت سنجی کلی توسط مقدار مربع خطا(MSE) و ضریب همبستگی(R2) برای راندمان مبدل حرارتی دو لوله ای به ترتیب 0001/0 و996/0 می باشد که نشان از موفق بودن این پیش بینی می باشد.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

کاربرد شبکه عصبی مصنوعی در پیش بینی تبخیر-تعرق با حداقل داده های هواشناسی

برآورد دقیق تبخیر- تعرق در اعمال مدیریت بهینۀ منابع آب، ضروری است. تبخیر - تعرق مؤلفه مهمی در توازن آب در مناطق مختلف به شمار می‌رود. مهندسین آب با علم به اینکه چه مقدار از آب آبیاری به مصرف محصول می‌رسد، قادر به محاسبه مهمترین جز آب در سیکل هیدرولوژیک یعنی تبخیر - تعرق خواهند بود. در مطالعه حاضر تبخیر– تعرق روزانه دشت ارومیه با استفاده از داده‌های هواشناسی طی دوره آماری 1390 – 1363 به روش فائو...

full text

مقایسه عملکرد شبکه های عصبی مصنوعی و شبکه های عصبی موجکی در پیش بینی درصد شکستگی جو در کمباین برداشت

در این تحقیق، نحوه عملکرد شبکه های عصبی موجکی با شبکه ‌های عصبی مصنوعی در پیش بینی درصد شکستگی دانه های جو در کمباین مقایسه شد. شبکه‌های مزبور به صورت تابعی از درجه حرارت هوا، سرعت کوبنده، سرعت پیشروی کمباین، فاصله کوبنده و ضدکوبنده در جلو و عقب واحد کوبنده و درصد رطوبت جو آموزش داده شد. شبکه عصبی موجکی (RASP1) با دقت 2/90 درصد در پیش بینی شکستگی دانه جو به عنوان یک جایگزین مناسب برای شبکه‌های...

full text

کاربرد شبکه های عصبی مصنوعی در پیش بینی بارش زمستانه

پیش‌بینی بارش یکی از مهم‌ترین مسائل در زمینه مدیریت بهینه منابع آب در بخش‌های مختلف نظیر صنعت، شرب و کشاورزی است. پیش بینی بارش می تواند باعث جلوگیری از تلفات و خسارات ناشی از بلایای طبیعی شود. هدف از تحقیق حاضر پیش‌بینی بارش زمستانه استان خراسان رضوی با استفاده از شبکه‌های عصبی مصنوعی می‌باشد. بدین منظور، ابتدا سری زمانی بارش متوسط منطقه‌ای به روش کریجینگ در طول دوره آماری به دست آورده شد. سپس...

full text

پیش بینی دمای کمینه ایستگاه کرج با استفاده از داده های شاخص های پیوند از دور و شبکه عصبی مصنوعی

توجه علمی به مخاطرات محیطی که آسیب پذیری بسیاری از کشورهای دنیا را به دنبال دارد، آغازی نسبتاً تازه دارد. یکی از این خطرها یخبندانها می باشند که سبب زیانهای عظیمی در زمینه های کشاورزی، حمل و نقل، انرژی ، زیست محیطی و غیره شده است. جهت جلوگیری از خطرات ناشی از آنها استفاده از روشهای پیش بینی امکان پیش آگاهی از حداقل دما و رخداد پدیده یخبندان را فراهم ساخته  تا مسئولان در جهت جلوگیری از آن...

full text

مطالعه آزمایشگاهی ضریب انتقال حرارت جابجایی در نانو سیال اکسید منیزیم – آب در مبدل حرارتی صفحه ‌ای

تحقیق حاضر با هدف بررسی ضزیب انتقال حرارت جابجایی نانوسیالات حاوی نانوذرات اکسید منیزیم در سیال پایه آب در مبدل صفحه ای، انجام شده است. آزمایشات در کسر حجمی های (0/005، 0/01، 0/015 و0/02) انجام شده است. نانوذره ای که در این تحقیق استفاده کرده ایم دارای قطر 20 نانومتر می باشد. همچنین نتایج نشان می دهد که با افزایش کسر حجمی نانوسیال، ضریب انتقال حرارت جابجایی و در نتیجه انتقال حرارت نیز افزایش پی...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  20- 27

publication date 2018-05-05

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023